无线温湿度,温湿度变送器,温湿度传感器,以太网温湿度,温湿度gsp,温湿度gprs,温湿度短信报警,风管温湿度变送器,温湿度传感器,Gsp温湿度,温湿度变送器,建大仁科,济南仁硕
全国服务热线:400-085-5807
首页 > 新闻中心 > 应用笔记 >

新闻中心

应用笔记

嵌入式系统中,人脸识别的最大用例之一

      与您的预期相反,将面部识别功能引入计算机并不需要高端硬件。自2000年代中期以来,计算能力已经取得了长足的进步,现在,嵌入式工程师就可以开发深度学习和人工智能应用,并将功能划分优先级,从而降低所需的处理能力。

系统的安全

      访问控制是嵌入式系统中人脸识别的最大用例之一,由于安全性经常受到威胁,系统需要足够健壮,以免被假人脸所破解。集成视觉和机器学习在这里很重要,因为它们可以对图像进行检查,以确保可行的数据进入管道。这也为管道带来了灵活性,使其不仅能解释可见的东西,进一步提高安全性。

数据的安全

      用户最担心的是,我们在日常生活中接触到的大多数面部识别应用程序都会处理云中收集的数据。没有人希望他们的行动和活动通过互联网传播,并可能被利用。但也有一些平台在本地执行图像处理。

轻量级操作系统

      嵌入式商业系统对深度学习的要求与研究级工具不同,后者通常是Linux编写的开源工具包,但是基于MCU的解决方案不能承受Linux安装的沉重的内存开销或长的启动时间,并且可以在使用更少内存和功耗的轻量级操作系统上运行

本地优化

      人工智能和图像处理技术的进步意味着面部识别可以在低功耗的微处理器上进行,而不是在耗电的GPU上进行,另外,基于MCU的方法还具有当前大多数MCU支持的多种节能模式的额外优点。由于MCU不需要启动像Linux这样的大型操作系统,因此主处理器可以在不需要时关闭。但是,一旦传感器需要工作,您仍然可以在几秒钟内唤醒处理器以获得全部功能。

人脸识别应用扩展

      越来越多的设备,包括面向消费者的物联网智能产品,将以人脸识别为核心功能进行设计。更重要的是,这些设备不仅能够辨别人脸,还能辨别表情。设备将能够读取诸如高兴、沮丧和愤怒等情绪暗示,并可能做出相应的反应。